Glass Synthesis in the Digital Age

Ulrich Fotheringham¹, <u>Leopold Talirz</u>¹, Tilmann Hickel², Jan Janssen³, Joachim Deubener⁴, Ralf Müller⁴, Marek Sierka⁵, Lutz Pfeifer⁶, Andrea Simone Stucchi de Camargo², Frederik Teepe⁷, Kerstin Thurow⁸, Moritz To Baben⁹, Anh Tuan Vu¹⁰, Lothar Wondraczek⁵

- ¹ Schott AG
- ² BAM Bundesanstalt für Materialforschung und –prüfung
- ³ Max-Planck-Institut für Nachhaltige Materialien GmbH
- ⁴ Technische Universität Clausthal
- ⁵ Friedrich-Schiller-Universität Jena
- ⁶ LTB Laser Technik Berlin GmbH
- ⁷ PRALL-Tec GmbH
- ⁸ Universität Rostock
- ⁹ GTT Technologies
- ¹⁰ Fraunhofer-Institut für Produktionstechnologie IPT

Vision for Specialty Glass Development and Life Cycle

Glass Development Loop

- 1. Simulation of glass properties & process (digital twin)
- 2. Robotic Melt for automated synthesis in the lab
- 3. Lab automation for automated sample analysis

Product Life Cycle

- **4. Production** using recycled components and process parameters informed by digital twin
- **5. Product use** without compromises in safety & performance
- 6. Recycling with separation of different special glass types

GlasAgent: Software agent integrating these loops

Application

New specialty glass for cost-effective optoelectronic components

Optical manufacturing and micro assembly are **cost drivers** for MEMS packages

Miniaturized MEMS Mirror Scanners for AR/VR Applications

Head-up-Display

Head-Mounted Display

Tools

- Databases (glass properties, patents, ...)
- Models that predict glass properties based on composition
- Thermodynamic simulations via GTT
- Atomistic simulations via pyiron workflows
- Melt request for robotic melts
- ...

Ontology

- Starting from GlasDigital ontology (MaterialDigital 1)
- Include relevant ISO and DIN standards for raw materials, processing, analysis & recycling
- Integrate description of simulation methods for digital twin

Glass Developer

Hello Otto, I'm looking for a glass with refractive index > A, Abbe number > B, and CTE < C ppm/K.

- ▶Otto searches the internal Schott database.
 - ▶Otto searches external glass database.

Otto

Unfortunately, I couldn't find any known glass with those properties. Should we try inverse design?

Glass Developer

Yes, let's give that a try.

1. Simulation

Chat Mockup SCHOTT glass made of idea

1.1 Data-driven models

- Given composition (75% SiO₂,15% Na₂O, 10% CaO) predict glass properties (glass transition temperature, ...).
- Semi-empirical and machine-learning models
- Development focus:
 - Uncertainty prediction
 - Inverse design: from property to composition

Otto

Which material model should we use:

- 1. FancyML
- 2. SimpleML

Glass Developer Please use the FancyML model.

Otto

All right. That will take a few minutes...

▶Otto uses the FancyML model for inverse calculation. Progress [----]

Otto

I've determined a glass composition [XYZ], with n=1.8, Abbe number 65, and CTE 4 ppm/K, but with a low confidence score. Warning: Experimental data in this property range appears to be insufficient.

Glass Developer

That's not a bad start. What's the prediction if I increase component X by 1% and omit expensive components?

▶Otto uses the FancyML model for prediction

1. Simulation

1.2 Atomistic simulations

- Automated workflows for melt-quench procedure & property calculations
- Classical & machine-learning force fields
- Using pyiron workflow manager

Melt-quench workflow

Chat Mockup

Let's start development with the following three compositions: [...].

▶Otto creates order for robotic melt.

Here are the melt orders with suggested raw materials. [Download/View] Submit?

That won't get done today anyway. Let's run the standard simulations overnight.

- ▶Otto starts thermochemical melt simulations with GTT/FaCCT Sage.
- ▶Otto starts atomistic simulations of glass composition and properties using universal ML potential. Runtime: 12 hours.

The simulated CTE for composition 3 deviates significantly from the

Please submit the melt order for the other two compositions.

Otto sends order to robotic melting facility.

1. Simulation

1.3 Thermochemical simulations (Calphad)

Calphad = *Cal*culation of *Pha*se *D*iagrams

- Based on GTT's GTOx database & ChemApp software
- Current development focus:
 - Expansion of thermochemical database
 - Cloud-based software solution

Chat Mockup

Let's start development with the following three compositions: [...].

▶Otto creates order for robotic melt.

Here are the melt orders with suggested raw materials. [Download/View] Submit?

That won't get done today anyway. Let's run the standard simulations overnight.

- ▶Otto starts thermochemical melt simulations with GTT/FaCCT Sage.
- ▶Otto starts atomistic simulations of glass composition and properties using universal ML potential. Runtime: 12 hours.

The simulated CTE for composition 3 deviates significantly from the

Please submit the melt order for the other two compositions.

Otto sends order to robotic melting facility.

2. Robotic Melting System

Development Goals

- 1. Automated definition of process parameters in the control software
- 2. In-line measurement of viscosity & density

3. Automated Lab

celisca CENTER FOR LIFE SCIENCE AUTOMATION

3.1. Sample Polishing (bottleneck for various tests)

Development Goals

- Development of a robotbased system for automated sample preparation in glass analysis
- 2. Development of a camera-based automated quality control system for polishing processes

3. Automated Lab 3.2.1 LIBS for quantitative glass analysis

LIBS = Laser-Induced Breakdown Spectroscopy

Working Principle

- 1. Laser-Induced ablation, creating μm- to mm-size plasma
- 2. Optical emission spectroscopy of the plasma
- Concentration of elements derived from intensity of characteristic spectral lines.

3. Automated Lab

3.2.2 LIBS for quantitative glass analysis

CALIBSO settings

Diode pumped ns-laser: 1064 nm, 4 mJ – 24,5 mJ

Spectrometer: 210 nm – 850 nm

Settings:

10 x 10 grid on 2.5mm x 2.5mm area

0 – 20 cleaning shots.

10 shots accumulated on camera

Glass sample with **three** main components:

Al₂O₃, SiO₂, CaO

CALIBSO LIBS experiment on rough, sawn side

4. Production

5. Product use at customer

MaterialDigital 3, Project GlasAgent

6. Recycling

PRALL-TEC

6.1. Separation of components from complex devices

- Innovative company specializing in various recycling technologies
- Broad product portfolio:
 Impact Crushers, Hammer Mills, Shredders,
 Screening and Sorting Systems

Areas of Application:

Plant Engineering:

6. Recycling

TU Clausthal

6.2. Test of melting behaviour

Electrical furnace with a **camera** Monitoring through a narrow Al₂O₃ tube

ML- Image analysis
Melt stages (ResNet34)
Granules → Foaming → Fining

ML- Image analysis
Castability check (Mechanical impact →
Image change rate reflects viscosity)*

GlasAgent

- Goal 1: speed up specialty glass development through
 - Easy-to-use digital tools via chatbot interface
 - Automatic simulation workflows
 - Robotic melt
 - Sample preparation for any analysis by automated polishing
 - LIBS for fast composition measurement
 - Demonstrator: development of special glass for optoelectronics
- Goal 2: enable recycling of special glasses & integrate it into the development process
- Partners: 10 partners from industry, university & research institutes with leading expertise
- Duration: 01/2025 12/2029

Discussion

Contact

Leopold Talirz
Head of Computational Materials Engineering
leopold.talirz@schott.com
github.com/ltalirz